Extensions of the Hestenes-Stiefel and Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property

نویسندگان

  • R. Ghanbari Faculty of Mathematical Sciences, Ferdowsi University of Mashhad‎, ‎P.O‎. ‎Box‎: ‎9177948953, Mashhad‎, ‎Iran.
  • S. Babaie-Kafaki Department of Mathematics‎, ‎Faculty of Mathematics‎, ‎Statistics and Computer Science‎, ‎Semnan University‎, ‎P.O‎. ‎Box 35195--363‎, ‎Semnan‎, ‎Iran.
چکیده مقاله:

Using search directions of a recent class of three--term conjugate gradient methods, modified versions of the Hestenes-Stiefel and Polak-Ribiere-Polyak methods are proposed which satisfy the sufficient descent condition. The methods are shown to be globally convergent when the line search fulfills the (strong) Wolfe conditions. Numerical experiments are done on a set of CUTEr unconstrained optimization test problems. They demonstrate efficiency of the proposed methods in the sense of the Dolan-More performance profile.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An eigenvalue study on the sufficient descent property of a‎ ‎modified Polak-Ribière-Polyak conjugate gradient method

‎Based on an eigenvalue analysis‎, ‎a new proof for the sufficient‎ ‎descent property of the modified Polak-Ribière-Polyak conjugate‎ ‎gradient method proposed by Yu et al‎. ‎is presented‎.

متن کامل

an eigenvalue study on the sufficient descent property of a‎ ‎modified polak-ribière-polyak conjugate gradient method

‎based on an eigenvalue analysis‎, ‎a new proof for the sufficient‎ ‎descent property of the modified polak-ribière-polyak conjugate‎ ‎gradient method proposed by yu et al‎. ‎is presented‎.

متن کامل

An Eigenvalue Study on the Sufficient Descent Property of a Modified Polak-ribi Ere-polyak Conjugate Gradient Method

Based on an eigenvalue analysis, a new proof for the sufficient descent property of the modified Polak-Ribière-Polyak conjugate gradient method proposed by Yu et al. is presented.

متن کامل

A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence

In this paper, we propose a modified Polak–Ribière–Polyak (PRP) conjugate gradient method. An attractive property of the proposed method is that the direction generated by the method is always a descent direction for the objective function. This property is independent of the line search used. Moreover, if exact line search is used, the method reduces to the ordinary PRP method. Under appropria...

متن کامل

Modification of the Wolfe Line Search Rules to Satisfy the Descent Condition in the Polak-Ribière-Polyak Conjugate Gradient Method1

This paper proposes a line search technique to satisfy a relaxed form of the strong Wolfe conditions in order to guarantee the descent condition at each iteration of the Polak-Ribière-Polyak conjugate gradient algorithm. It is proved that this line search algorithm preserves the usual convergence properties of any descent algorithm. In particular, it is shown that the Zoutendijk condition holds...

متن کامل

Modification of the Wolfe line search rules to satisfy the descent condition in the Polak-Ribière-Polyak conjugate gradient method

The Polak-Ribière-Polyak conjugate gradient algorithm is a useful tool of unconstrained numerical optimization. Efficient implementations of the algorithm usually perform line searches satisfying the strong Wolfe conditions. It is well known that these conditions do not guarantee that the successive computed directions are descent directions. This paper proposes a relaxation of the strong Wolfe...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 7

صفحات  2437- 2448

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023